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Five-dimensional structure refinement of decagonal
AlMn,,
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D-8000 Miinchen 2, Federal Republic of Germany
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Abstract. A single-crystal x-ray structure analysis of the metastable decagonal phase
AlggaMng ), centrosymmetric superspace group P10s/mme, has been performed using the
n-dimensional (n-p) approach. The structure has been solved by Pafterson analysis and
subsequent least-squares refinement, both in the sp description. The final wR = 0,144 for
233 independent reflections with > 2¢(J) and 18 variables. There are four 5D atoms in the
asymmetric unit generating one planar and one strongly puckered quasiperiodic atomic layer
in physical space. These layers show close resemblarice to the respective planar and puckered
layers of the crystalline Alj;Fe, phase. The 3D decagonal structure is built of periodically
stacked packings of six such layers per translation period.

1. Introduction

The present paper is the third in a series of single-crystal x-ray-diffraction studies of
decagonal Alygs;Mnyy(;y. The first reports a reciprocal-space study using film techniques
(Steurer and Mayer 1989; in the following referred to as paper [), the second gives the
results of a sp Patterson analysis, demonstrating the layer structure and deriving a 5D
structure model fo the decagonal phase (Steurer 1989; in the following referred to as
paper II). To the knowledge of the author, these two papers are the only published
single-crystal x-ray studies of decagonal Al;Mn,,, possibly due to the problem of
obtaining sufficiently large single crystals of this metastable phase. There are, however,
alarge number of papers reporting structural studies with other methods such aselectron
diffraction, x-ray powder diffraction or spectroscopical techniques. A detailed review
of this work is given in paper II and in the review article of Steurer (1990), and shall not
be repeated in the present paper, which has the aim of transforming the qualitative
structure model of paper Il into a quantitative one by 5D least-squares structure refine-
ment. The main motivation for these sb refinements was to obtain the signs of structure
factors for the calculation of 3p Fourier syntheses, which represent directly the electron-
density distribution function of decagonal AlgMn,,. it should be kept in mind, however,
that the diffuse scattering described in paper I is not considered in the present study.
The Bragg reflections alone contain information of an average structure only, which will
result in an at least partially statistical character of the sD atoms and/or some smeared
5D density regions.
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2. How to perform a quasicrystal structure analysis

Quasicrystals can be recognized easily by their diffraction patterns, which show sharp
Bragg reflections in an arrangement with non-crystallographic point symmetry (icosa-
hedral, decagonal, . ..). Non-crystallographic point symmetry operations, like a fivefold
rotation, for instance, are not compatible with a 3D periodic translation lattice. They
can, however, become compatible with a #-p space lattice, if the dimension » of the
lattice ischosen in an appropriate way (Levitov and Rhyner 1988). Therefore, astructure
which is quasiperiodic in 3D can be described as a periodic structure in n dimensions, as
was first suggested by de Wollf (1974) {or incommensurately modulated phases and by
Janssen (1966) for quasicrystals. For the n-dimensional embedding method, the 3D
diffraction pattern (quasiperiodic reciprocal lattice) is considered to be a projection of
an n-D diffraction pattern ( periodic reciprocal lattice} upon physical space. Since direct
andreciprocal spaces are connected by a Fourier transformation, a projection inrecipro-
cal space corresponds to a section in direct space and vice versa. Thus, the 35 quasi-
periodic structure represents an irrational hyperplane of a fictitious #-D supercrystal.

What is the main advantage of a n-D description {(with #-D unit cells building the
periodic n-D translation lattice) compared with any 30 one? The tools of regular crystal
structure analysis are all based on the unit-cell approach, i.e. symmetry, metrics and
content of one single unit cell are representative of the structure of the whole crystal.
Thus, classical techniques like Patterson and Fourier synthesis or direct methodscanbe
employed for #-D quasicrystal structure analysis in an extended form again. The aim of
such a structure determination is to find where the atoms are in the real 3b quasicrystal.
The »-D approach represents an intermediate state in the handling of structural infor-
mation, between 3D diffraction data and 3D quasicrystal structure information. In
addition, the n-p description allows a clearer comparison of the structural differences
of different quasicrystai structures.

The task of the #-D least-squares refinements is to optimize a qualitative »-D start
model. The parameters defining the location, shape, scattering power, thermal
vibrations and/or statistical disorder are varied to give the best fit of observed and
calculated diffraction intensities. In the case of low quality quasicrystals in particular,
one has to confine oneself to a very limited number of free variables leading to a first
approximation of the #-D atoms only. As in regular structure analysis, however, a
subsequent Fourier synthesis performed with calculated phases and observed structure
amplitudes yields additional information: atoms not included in the refinement of the
_ structure model appear in the Fourier maps, smeared electron density due to disorder
is located, etc. Thus, at the end of each structure analysis the #-D and 3D Fourier maps
should be plotted, to derive all valuable information which is not includedin the structure
mode{ but is hidden in the diffraction data. The 30 Fourier maps give the answer to the
question of where the atoms are directly, and from the height of the maxima in the layer-
line plots, the type of atoms can be derived ( for x-rays Mn peaks are expected to be two
times stronger than Al maxima).

A detailed analysis of the symmetry and metrics of decagonal Al Mny,), and the
method of indexing the Bragg reflections was givenin paper I. The information necessary
for the understanding of the coordinate systems used for the unit-cell description and
for the sp Patterson and Fourier synthesis is represented graphically in figure 1. The 5D
embedding space V" consists of two orthogonal subspaces, the 3D external (physical,
parallel) space Vg, with the orthogonal basis vectors o), v; and p,, and the 2D internal
(complementary, perpendicular) space 1, with orthogonal basis vectors v, and ps. All
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Figere 1. Schematical representation of the
orthogonal subspaces Vg, spanned by the basis
vectors ¢, v; {p; was not drawn for reasons of
clarity), and V| with basis vectors o, and v, Vg
and ¥, intersect each other in one single point
only: the origin of the basis vectors. The pro-
jections of the sp basis 4; upon V¢ and ¥, the
vectors @, are marked. The transformation of a
point £§ given by its 5D coordinates (af , 0, aff ) by
a five-fold rotation onto P} with (a}, 0, a}) cor-
responds to & rotation through an angle of 271/5 in
Ve, and one through 6sr/5 in V.

reciprocal lattice vectors of each quasiperiodic reciprocal lattice layer spanned by o) and
v, in Vg can be represented by linear combinations of five basis vectors pointing to the
corners of a regular pentagon a} = a(cos 2i/5, sin 2xi/5,0) with i=0,.. ., 4, and
af = —(af + a3 + ai + a}),forming a symmetry-adapted basis. Perpendicniar to the
plane formed by this and paralle! to the tenfold axis, a further reciprocal basis vector
a$ = af (0,0, 1) parallel to p; is required. The star of the five vectors in the (o), v2)}—
plane which corresponds to the projection of the 5D reciprocal basic vectoss
df =(a}.0,a%),i=1,..., 4 upon Vg is shown in figure 1. The star in the V| plane
results consequently from the projection upon *V'y. The action of a fivefold rotation in 5D
space, as it is defined by its matrix representation given in paper I1, is also given in figure
1. By the action of this 5-fold symmetry operation, the peint P§ with 5D coordinates
(ag , 0, af), for instance, is transformed into P with (af , 0, a¥ ). The projection of the
trajectory upon Vg and ¥ corresponds to rotation components of 2x/5 and 67/5,
respectively. For the description of the sD unit cell we use the d; basis; for the discussion
of the characteristic features of the internal and external spaces the p; basis is more
appropriate.

3. Experiment

A detailed description of the preparation of a single crystal of metastable decagonat
AlzgyMngy(a), its investigation by x-ray photographic techniques and the indexing of
reflections was given in paper I. The reflections are quite broad, the average FWHMs are
at least four times larger than those which are observed in the case of normal crystals on
our diffractometer. Nevertheless, aremarkable number of reflections with large internai
components of the diffraction vector are observable (cf. figure 2 of paper II). The crystals
of the decagonal phase underwent a phase transformation, at room teinperature, to
amorphous material within one year of their preparation. X-ray photographs showed
powderrings and diffuse scattering, only. Thisis one additional argument that the crystal
investigated was a metastable quasicrystal and not a multiply twinned regular crystal.
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(5)
Figure 2. A characteristic (10110) section of the sD Patterson function: {«) intensities

computed from observation and () calculated intensities. All maxima of one unit cell are
contained in this plane. All plot coordinates are given on the p, basis.

3.1. Data collection

The x-ray equipment used was an Enraf-Nonius CAD4 four-circle diffractometer, with
MoK« radiation and a graphite monochromator. Lattice parameters were refined from
24 reflections. w-scans with @ = 5.0 + 0.35 tan 97, extended at each side by 25% for
background determination. Out of the infinite number of possible reflections within
0 < 6<30%in a first run, all those within one asymmetric unit were measured with
-3 < h;<3,i=1to4,and 0 < k, < 17. This data set includes all reflections observable
on the x-ray precession photographs. A denser set of reflections may give resolution
problems and would not yield much more observable intensities since it is known that
the geometrical form factor g, causes a rapid decrease of the intensities with increasing
internal component of the diffraction vector. In this way, 1807 intensities were collected
with constant scan time of 4 min/reflection. The 332 reflections of this data set with
1> 20(]) (o(): standard deviation from counting statistics) were remeasured in ten
symmetrically equivalent asymmetric units with a scan time of 4 min/reflection. The full
set of 5189 intensities was corrected for Lorentz and polarization effects but not for
absorption (due to the very irregular shape of the crystal). After rejecting the weakest
and the strongest reflections of each symmetrically equivalent set, the arithmetic mean
anditsstandard deviation wascalculated from the—at [east eight—remaining intensities.
(R; = 0.038, 233 unique reflections with I > 2a(l)).

" 4, Structure solution and refinement

The structure of decagonal Al Mnyy,, has been solved in 2 rather straightforward
manner. The 5D Patterson function (figure 2 (a)) is easy to interpret and a model with
three atoms in the asymmetric unit has been used as the starting set for the least-squares
refinements of the sp structure. The function minimized was

xz =2 wi(IFobs(H)l - IFCI(:(H')D2
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with observed and calculated structure amplitudes | F(H)|, | Fy(H) |, respectively, and
with weights w; = k/c?( F(H)); k is refined to obtain x* = 1. This is recommended in all
cases in which the errors of the reflection intensities are larger than is expected by
counting statistics alone (Prince 1982). The reliability factors R and wR used were

R= (Sl Fautt)| - [Fut]] ) 1 Pt )
ok = [ w1 )| - | Fec)? (S il Fomani?) 1]

The structure factor formula applied in the refinements was

F(H) = 1/9@ exp(2rifl 1) fu(He)p To(He Hyg (H )

with diffraction vector H = (Hg, Hy) = X, dY ,i = 1, 5. On the v;basis the components
of the diffraction vector are defined as Hg = A¥p} + hfv; + hfo} and Hy = hiv} +
hlo? . The positional vector of the atom k is given by r, = £, x¥d;. The atomic scattering
factor f,(H) depends on the external component of the diffraction vector, only. p, is
the occupancy factor, the temperature factor T, (Hg, H;) is written in the form

Tu(Hg H:) = exp{— }[BL (AT + h5)a}? + B5AFad’] + B! (hE + hF)al?).

It contains the isotropic in-plane term B, and the perpendicular component B%, both
inexternal space, as well asone coefficient B'ininternal space. The external temperature
factor components of the sp atoms have the same meaning as the temperature factor of
aregular structure. The internal component, corresponding to a smearing of the s atom
paralle] to internal space, leads to a higher frequency of intersections of 5D atoms with
the physical space. Hence, a number of interstitial sites become occupied at the cost of
the regular ones. Displacive disorder may, therefore, be described by the external and
substitutional disorder by the internal part of the temperature factor. The geometrical
form factor is given by

gulHy) = (1/a*)? 2 sin;,1 {A [exp(id; 41 4e) = 1]
4 . _
— Ajpilexp(id;hg) — 1}HA;A (4 — A5)]

with A; = 2nH,-¢;and |¢;| = 1/a} . Q; is the area of the 5D unit cell projected upon ¥y,
A, is the radial atomic-size parameter defined in figure 3. We know from the Patterson
analysis that all 5D atoms occupy special positions (i/5, i/5,/5,i/5, z} i can be an integer
between 0 and 4, with minimum site symmetry 5. The same is the case for the original
and the general Penrose tilings. Thus it is appropriate to take the general shape of a
higher dimensional atom in the case of the general Penrose tiling (cf Pavlovitch and
Kléman 1987) for the atomic shapes of the starting model for the least-squares refine-
ments. This corresponds to an irregular decagon with five-fold symmetry defined by the
angle 8. between the unit vectors e;and ¢, spanning the decagon (figure 3), and the
radius A,. In the course of the refinements these shapes changed to regular pentagons
and 6, has been fixed to the ideal pentagonal value 27/5. The fine structure of the
pentagonal atom of the Penrose tiling, as an example for a possible fine structure in our
case, is shown in figure 3(a): each sector corresponds to a particular vertex configuration
in the quasicrystal structure and may be occupied by a different atom type. The variation
of the Al/Mn ratio for all these different regions would require more parameters than
it would be advisable to refine with the given data set. Thus, for each 5D atom, only one
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(b}

Figure 3. Two examples of possible shapes of the 5D atoms parailel to V. Due to the site
symmetry the shape has to be invariant under the actionof a fivefold rotation, The pentagonal
‘atom’ drawn in (4) corresponds to one of the four ‘atoms’ gencrating the original Penrose
tiling, the marked regions (*chemical fine structure’) correspond to particular vertices of the
titing (cf Paviovitch and Kléman 1987). The drawing in (5) illustrates the shape of *atoms’ in
a general Penrose tiling, and is defined by the unit vectors e, with j = 0, ..., 9, the radius A
of the circumscribed circle and the angle 8,,, | between the unit vectors.

occupational parameter has been refined, giving the ratio of Al to Mn on this site,
assuming a statistical distribution over one sp atom. The internal temperature-factor
coefficients adopted values less than their standard deviations and were also reset to
zero and fixed.

The refinementssmoothlyconvergedto R = 0.305and wR = 0.144 for 233 reflections
with I > 20(J) and 18 variables. The quality of the least-squares fit is illustrated by a
Foo(H)/F,.(H) plot in figure 4. Most of the significant deviations from the ideal dis-
tribution may result from the bad quality of the metastable Al-Mn crystal leading to
rather large systematic errors in the diffraction intensities. Some are due to deficiencies
in the structure model since neither the chemical fine structure of the atoms nor the
residual electron density appearing in the difference Fourier synthesis (figure 5) have
been included in the starting model. The number of parameters would have increased
too much for this number of low quality (but the only accessible) refiections. An
estimation of the amount of electron density not covered by the refined stricture model,

150 s s s
100 s
p——
w2
291
=
M
et
50
0 I’ hd . PR T SRR 'Y )
0 5 oo 150 Figure 4. The F (H)/F (H) plot for the final

[ 1
F(CLC) model,
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(6)
Figure 5. (10110) sections of the sp (a) Fourier (b) difference Fourier function calculated

after the last refinement cycle from F,,(H) and Fo,,(H) ~ F4(H). The highest maximum in
(b) is about 12% of the highest one in (2). All plot coordinates are given on the v, basis.

but which results from the Fourier syntheses, comes to a value of about 15%. Though
the least-squares fit is not optimal, it can be expected for a centrosymmetric structure
that most of the signs of the structure factors are correct, leading to reliable Fourier
syntheses and, therefore, to a reliable map of atoms in the decagonal phase.

5. The calculated density

The density of the refined structure model may be calculated in the following way. Each
section of a sD atom with the physical space gives a 3D atom. The probability of such
sections is proportional to the area Q}, of the internal component of the nD atom k. For
the case when Q) = Q! (the projection of the 5D unit cell upon V') this probability

Table 1. Parameters of the sD atoms of decagonal Alyy; Mny,;, with ESD’s in parentheses.
Listed are fractional atomic coordinates x; (d; basis), two external (B, B%) and one internal
(B") temperature factor coefficient [ A2, partial Al site occupancy factor pa (Pus = 1 = pay),
and radial atomic size parameter A, as a fraction of 1/a]’. Negative A, corresponds to the
opposite orientation of the vectors A,e;.

Parameters Atom 1 Atom 2 Atom 3 Atom 4
X 1/5 3/5 0 2/5

X3 1/5 3/5 0 2/s

X3 1/5 3/5 0 2/5

X4 1/5 3/5 0 2/5

Xs 0.0642(7) 0.123(7) 1/4 1/4

Bt 1.8(3) 3.0(7) 5(1) 2.4(6)
BE, 1.7(2) 3.2(6) 2(1) 1.2(4)
B! 0 0 0 0

Pa 0.84(8) 0.90 0.8(2) 0.3(1)

Ax ~0.403(2) —0.356(1) 0.298(2) 0.350(1)
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Figure 6. (00011) scctions { paralle! to the intcrnal space) of the sp Fourier and difference
Fourier functions of respectively, (@) and (b) atom one, (c) and (d) atom two, (¢) and (f)
atomthree, and (g) and (h) atom four. The refinedssize parameter A, isindicatedschematically

by the pentagons. Relative peak heights are given in arbitrary units. All plot coordinates are
given on the v, basis.

becomes equal to one. Thus, the ratio Q}/Q! gives the relative frequency of 3D atoms
(vertices) generated from the 5D atom k. The number density py = (2 QL)/Q (Q s the
volume of the 5D unit cell) gives the number of 3D atoms (vertices) per unit volume.
Thus, the density of the quasicrystal can be calculated as p. = M,py/N,, where N,
corresponds to the Avogadro number. Inserting the experimental values, we obtain
p. = 3.1Mgm3, Considering the 15% of additional electron density not included in the
refined structure model, one obtains a density of about p, = 3.6 Mg m~3. The density of
the decagonal phase has not been measured experimentally, but some values of Al-
Mn phases of similar composition are given for comparison: the observed density of
icosahedral Al;sMn, is about 3.5 Mg m~3 (Yamamoto 1988), of hexagonal ¢-Al,¢Mn,
(Al;Mny,) is pg = 3.65(5) Mg m~3 (Taylor 1959), of hexagonal u-MnAl, (AlgMny,) is
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Figure 6 continued

p. = 3.556(2) Mg m~* (Shoemaker et al 1989), and of triclinic §-Al;;Mn, (Al,;Mny,) is
p = 3.88 Mg m~? (Kontio et al 1978).

6. Results and discussion

The refined atomic parameters in terms of the sD description are listed in table 1. All
refined atoms occupy special sites (x, =i/5, i=0, ..., 4) as is the case for the 20
Penrose tiling. The external thermal parameters (which contain dynamical and static
components) are similar to, or slightly higher than, those for atoms of regular structures.
The values of the internal temperature factor components give no hints for a significant
substitutional disorder in the real quasicrystal structure (phasons). By fixing the Al/Mn
ratioof atom2 to p 5, = 0.9 during the refinements, the theoretical composition Al,sMn,,
could be obtained.
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The gualitative structure model of Yamamoto and Ishihara (1988) consists of three
SD atoms in the asymmetric unit with positions (—2/5, —2/5, —=2/5, —2/5, 0.0833),
(-1/5, ~1/5, ~1/5, ~1/5, 0.2500) and (~3/5, —3/5, —3/5, —3/5, 0.2500), givenon a
different basis however. The atoms have no chemical fine structure and no explicit
differentiation between Al and Mn atoms was performed. The structure model only has
some basic similarities with the present results.

A more vivid impression about the structure characteristics than can be obtained by
numbers can be conveyed by special sections of the sp Fourier and difference Fourier
functions. Thus, the Fourier map of the (10110} plane containing all 5D atoms in the
unit cell is given in figure 5(a). The maxima marked 1, ..., 4, and their symmetrical
equivalents, correspond to the atoms included in the refinements. On the difference
Fourier map (figure 5(b)) there appear some additional maxima; the maximum peak
heights are about 12% of that of atom four in the Fourier map. An integration of the
difference density of figure 5(b), and of eight more sections parallel to it, yielded an
overall residual electron density of 15% of that of the model refined, indicating a lot of
disorder, Thus, the four 5D atoms listed in table 1 represent about 85% of the electron
density of the quasicrystal, corresponding to the more- or less-ordered part of the
structure, while the residual 15%, representative of the disordered part, can be derived
from the (difference) Fourier syntheses only. This emphasizes the importance of (dif-
ference) Fourier syntheses, a matter of course in regular structure analysis, for a reliable
quasicrystal structure determination.

The internal space component of the 5D atoms is characterized in the (00011) sections
of the s» Fourier function {figure 6). The pentagonal shape of the atoms parallel to the
internal space is easily recognized. The difference-Fourier plots, giving the electron
density resulting from the observed structure amplitudes minus that of the refined model,
of figure (6) indicate the chemical fine structure of the sD atoms. Positive electron density
corresponds to a concentration of Mn in this region, negative density indicates more Al
relative 1o the average composition which has been refined for this particular 5D atom.
Thus, analogously to figure 3(a) each region could be assigned to a particular vertex
position occupied by a particularatom. The high degree of disorder (the Fourier synthesis
indicates even in these subregions of the sD stom a statistical Al/Ma distribution) does
not let it appear advisable, however, to interpret the chemical fine structure in a more
detailed way. The position of each type of atom in the 3D real structure can be seen much
more easily in the Fourier sections of figures 7 and 8.

7. The structure of the layers

In figure 7, large real space (11000) sections of about 23.5 X 23.5 A% of the sp Fourier
function are shown with line drawings illustrating the characteristical features. For sake
of clarity the (10010) sections are also given in each case. The correspondence of 3D and
5D maxima becomes more transparent in this way as do the global differences between
the different layers. In figure 7(a) and (&) the highest maxima are connected in such a
was as to show the close resemblance of these two layers, which may be considered as
one corrugated layer, with the puckered (y = 1) layer of crystalline Al,;Fe, (cf figure 4
of Black 1955). As for Al;Fe,, this layer consists primarily of Al. In the (10010) section
one unit cell containing the atoms one and two is marked in each case. The broken lines
corresponds to the lines at x; = 0.064 and 0.124 in figure 5(a). Henley (1985) and Kumar
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Figure 7. Quasiperiodic (11000) sections ( parallel to the external space with a size of about
23.5 x 23.5 A?) of the sp Fourier function of decagonal Al,sMny, at (a) x5 = 0.064, (b) x, =
0.124 and (c) x; = . Characteristic structure motifs are marked, which can also be found in
slightly distorted formin the Al ;Fe,-type structures. (d) The quasicrystal structure projected
down the tenfold screw axis (calculated from reflections F(h,, ks, ks, k4, 0), only). Addition-
ally, the respective (10010) sections are shown to allow visualization of the correspondence
between sD and 3D structures. All plot coordinates are given on the p; basis.
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et al (1986) already pointed out that the puckered layer of the Al;;Fe, structure may be
considered as a relaxed decorated 2D Penrose tiling,

In figure 7(c) the maxima are connected differently to emphasize the close resem-
blance of the x5 = } layer with the plane (y = 0) layer of crystalline Al,;Fe, (cf figure 3
of Black 1955). The unit cell of Aly;Fe, is marked with a chain line. Despite small shifts
and a slightly different distribution of Al and transition metal atoms (the strong maxima
in this Fourier section correspond to Mn atoms), these structure elements appear to be
the same in both phases. The ratio of transition metal to aluminium in this layer is higher

than that for the corresponding Al;Fe, layer.

The distances between strong maxima (Mn—Mn) of about 4.8 A agree quite well with
the pair distances resulting from the neutron contrast variation study of Dubois and
Janot (1988); the same is true for Mn—Al and Al-Al distances.

The projection of the structure upon (11000) (Fourier synthesis calculated with
F(hhyh3h,0), only) is given in figure 7(d). It shows the same structural characteristics
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as the analogous map for decagonal AlgCu,yCoys (Steurer and Kuo 1990). The only
difference is that in the present case the pentagonal channels parallel to the tenfold screw
axis are all occupied; the occupation is not in alternating manner. This alse shows
good agreement with structure motives visible on a2 HRTEM image of decagonal Al-Mn
published as figure 8 by Hiraga et af (1987).

Larger sections (of about 40 x 40 A?) of the electron density maps of the three
different layers are given in figure 8§ to illustrate the distribution of the decagonal and
pentagonal structure motifs,

8. The layer structure

The 3D decagonal structure results from stacking sandwiches, each one consisting of one
planar layer (x5 = 4; one has to keep in mind that the coordinate of the periodic axis
corresponds to x; on the p; basis and to x5 on the d; basis, respectively) between two
symmetrically equivalent puckered quasiperiodic layers (those containing the atoms
with x; = 0,064 and x; = 0.124, as well as x3 = 0.436 and x; = 0.376). These sandwiches
are rotated by 36° relative to one other, The distances between the atoms of these two
symmetrically equivalent layers should correspond to the frequent distances found for
the pair correlation function (Dubois and Janot 1988). This can easily be verified for the
atoms in the layers with x; = 0.064 and x; = § — 0.064 with a spacing of 4.66 A, but not
for the layers in x; = 0.124 and x; = } — 0.124. The resulting distance of 3.1 A does not
appear in the table of pair distance functions. This dilemma, however, can be overcome
by looking at figure 5{b). The sD difference Fourier map clearly shows, that the 5D atom
two in reality is split into two atoms, one centred on the first atom layer with x5 =
0.064, and the other at about x; = 0.14. The resulting spacing between symmetrically
equivalent atoms of about 2.7-2.8 A can be related to the observed pair distances again.

The 3D coordination polyhedra are almost the same as those occurring in the Alj;Fe,
structure {cf figure 1 of Black 19535}, thus, the same is true for the distances. What are
now the principal structural differences between both the quasiperiodic and the related
periodic Alj;Fe, phases? Both have a preference for the formation of planar pentagonal
and decagonal structure elements; they differ primarily in the way in which these
structure elements are combined. The puckered (y = 1) crystalline layer consists of
infinite wavy bands of edge-connected pentagons running parallel to a. In the case
of the quasiperiodic puckered (x; = 0.064 - 0.124} layer, ten of these pentagons are
arranged in the form of decagonal rings centred by a further pentagon. The crystalline
plane ( v = 0) layer shows dimers of unregular decagons like holes in anetwork of infinite
chains of edge-connected triangies running parallel to ¢ and to a + ¢, respectively. In
the corresponding quasicrystalline layer these decagons become regular and appear
isolated or in pentagonal clusters. In both cases the quasiperiodic arrangement allows
the formation of undistorted regular pentagons and decagons that may be favourable
energetically.

9. Summary

The aim of the present study was to obtain a model of the 3D structure of decagonal
AlygMny ). Practically, this can only be performed via 3p Fourier syntheses. The
prerequisite for these caleunlations is the knowledge of the signs of the structure factors.
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The main objective of our 5p least-squares structure refinement was, therefore , to obtain
the signs. Even for the moderate R-factor 0of 0.144. one can expect correct signs for most
of the structure factors, since for a change of the sign the magnitude of a structure factor
had to run through zero. The electron density maps indicate a close resemblance of
AlzgyMny;) with the crystalline Al Fe, structure, and similar coordination polyhedra
with comparable distances consequently occur. In contrast to decagonal AlgsCuz,Coys,
which is a two layer structure, decagonal Alyg,Mng, is built of six quasiperiodic layers.
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