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Five-dimensional structure refinement of decagonal 
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D-8000 Munchen 2, Federal Republic of Germany 

Received 23 May 1990, in final form 24 January 1991 

Abstract. A single-crystal x-ray structure analysis of the metastable decagonal phase 
Al,sc$4nacs, centrosymmetric superspace group PlO,/rnmc, has been performed using the 
n-dimensional ( n - ~ )  approach. The structure has been solved by Patterson analysis and 
subsequent least-squares refinement, both in the SD description. The final WR = 0.144 for 
233 independent reflections with I > 2 4 )  and 18 variables. There are four SD atoms in the 
asymmetric unit generatingone planar and one strongly puckeredquasiperiodicatomiclayer 
in physical space. These layersshowclose resemblance tothe respectiveplanar andpuckered 
layers of the crystalline Al,,Fe, phase. The 3D decagonal structure is built of periodically 
stacked packings of six such layers per translation period. 

1. Introduction 

The present paper is the third in a series of single-crystal x-ray-diffraction studies of 
decagonal A178&lnz~2~. The first reports a reciprocal-space study using film techniques 
(Steurer and Mayer 1989; in the following referred to as paper I), the second gives the 
results of a SD Patterson analysis, demonstrating the layer Structure and deriving a 5D 
structure model fo the decagonal phase (Steurer 1989; in the following referred to as 
paper 11). To the knowledge of the author, these two papers are the only published 
single-crystal x-ray studies of decagonal A1,8Mnn, possibly due to the problem of 
obtaining sufficiently large single crystals of this metastable phase. There are, however, 
a large number of papers reporting structural studieswith other methods such aselectron 
diffraction, x-ray powder diffraction or spectroscopical techniques. A detailed review 
of this work is given in paper I1 and in the review article of Steurer (1990), and shall not 
be repeated in the present paper, which has the aim of transforming the qualitative 
structure model of paper I1 into a quantitative one by 5D least-squares structure refine- 
ment. The main motivation for these 5D refinements was to obtain the signs of structure 
factors for the calculation of 3D Fourier syntheses, which represent directly the electron- 
densitydistribution functionofdecagonal AI,,Mn22. It should be kept in mind, however, 
that the diffuse scattering described in paper I is not considered in the present study. 
The Bragg reflections alone contain information of an average structure only, which will 
result in an at least partially statistical character of the 5D atoms and/or some smeared 
5D density regions. 
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2. How to perform a quasicrystal structure analysis 

Quasicrystals can be recognized easily by their diffraction patterns, which show sharp 
Bragg reflections in an arrangement with non-crystallographic point symmetry (icosa- 
hedral, decagonal,. . .). Non-crystallographic point symmetry operations, like a fivefold 
rotation, for instance, are not compatible with a 3D periodic translation lattice. They 
can, however, become compatible with a n-D space lattice, if the dimension n of the 
lattice ischosenin an appropriate way (Levitovand Rhyner 1988). Therefore, astructure 
which is quasiperiodic in 3 0  can be described as a periodic structure in n dimensions, as 
was first suggested by de Wolff (1974) for incommensurately modulated phases and by 
Janssen (1966) for quasicrystals. For the n-dimensional embedding method, the 3D 
diffraction pattern (quasiperiodic reciprocal lattice) is considered to be a projection of 
an n - ~  diffraction pattern (periodic reciprocal lattice) upon physical space. Since direct 
and reciprocal spaces are connected by a Fourier transformation, aprojection in recipro- 
cal space corresponds to a section in direct space and vice uersn. Thus, the 3D quasi- 
periodic structure represents an irrational hyperplane of a fictitious n-D supercrystal. 

What is the main advantage of a n-D description (with n-D unit cells building the 
periodic n-D translation lattice) compared with any 3D one? The tools of regular crystal 
structure analysis are all based on the unit-cell approach, i.e. symmetry, metrics and 
content of one single unit cell are representative of the structure of the whole crystal. 
Thus. classical techniques like Patterson and Fourier synthesis or direct methods can be 
employed for E-D quasicrystal structure analysis in an extended form again. The aim of 
such astructure determination is to find where the atoms are in the real 3D quasicrystal. 
The n-D approach represents an intermediate state in the handling of structural infor- 
mation. between 3D diffraction data and 3~ quasicrystal structure information. In 
addition, the n - ~  description allows a clearer comparison of the structural differences 
of different quasicrystal structures. 

The task of the n-D least-squares refinements is to optimize a qualitative n-D start 
model. The parameters defining the location, shape, scattering power. thermal 
vibrations and/or statistical disorder are varied to give the best fit of observed and 
calculated diffraction intensities. In the case of low quality quasicrystals in particular, 
one has to confine oneself to a very limited number of free variables leading to a first 
approximation of the WD atoms only, As in regular structure analysis, however, a 
subsequent Fourier synthesis performed with calculated phases and observed Structure 
amplitudes yields additional information: atoms not included in the refinement of the 
structure model appear in the Fourier maps, smeared electron density due to disorder 
is located, etc. Thus, at the end of each structure analysis the n-D and 3D Fourier maps 
shouldbeplotted, toderiveallvaluableinformationwhichisnot includedinthestructure 
model but is hidden in the diffraction data. The 3D Fourier maps give the answer to the 
questionofwhere theatomsaredirectly,andfromtheheightof themaximain thelayer- 
line plots. the type of atoms can be derived ( for x-rays Mn peaks are expected to be two 
times stronger than AI maxima). 

A detailed analysis of the symmetry and metrics of decagonal A17w2~Mn,,(2,, and the 
methodofindexing the Braggreflections wasgivenin paperI. The information necessary 
for the understanding of the coordinate systems used for the unit-cell description and 
for the SD Patterson and Fourier synthesisis represented graphically in figure 1. The SD 
embedding space Y consists of two orthogonal subspaces. the 3D external (physical, 
parallel) space TE, with the orthogonal basis vectors U,, u2 and u3, and the ZD intcrnal 
(complementary, perpendicular) space V,,  with orthogonal basis vectors u4 and us. All 
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Figure 1. Schematical representation of the 
orthogonal subspaces ?‘E, spanned by the basis 
vectors U , .  v2  (U, was not drawn for reasons of 
clarity), and 9’, with basis vectors q and us. YE 
and Q, intersect each other in one single point 
only: the origin of the basis vectors. The pro- 
jections of the SD basis d. upon Q, and Q,, the 
vectors a:. are marked. The transformation of a 
pointpi givenbyitsSDcoordinates(a~,O,a:)by 
a five-fold rotation onto P: with ( U ; ,  0,n;) COI- 

responds to a rotation through an angle of 2x/5 in 
Q,, and one through 6x15 in Q,. 

reciprocal lattice vectors of each quasiperiodic reciprocal lattice layer spanned by U, and 
u2 in YE can be represented by linear combinations of five basis vectors pointing to the 
comers of a regular pentagon a? = ar(cos Zzi/5, sin2zi,’5,0) with i = 0,. . ., 4, and 
00“ = -(a? + a; + a$ + a:),  forming a symmetry-adapted basis. Perpendicular to the 
plane formed by this and parallel to the tenfold axis, a further reciprocal basis vector 
a: = a; (0, 0,l) parallel to u3 is required. The star of the five vectors in the (U,, U&- 
plane which corresponds to the projection of the SD reciprocal basic vectoa 
d: = ( a t ,  0, i = 1,. . ., 4 upon YE is shown in figure 1. The star in the VI plane 
results consequently from the projection upon V,. The action of a fivefold rotation in SD 
space, as it is defined by its matrix representation given in paper 11, is also given in figure 
1. By the action of this 5-fold symmetry operation, the point P$ with 5D coordinates 
(a,*,O,a$),forinstance,istransformedinto Pf with (a:,O,af).Theprojectionofthe 
trajectory upon YE and T, corresponds to rotation components of %/5 and 6z/5, 
respectively. For the description of the SD unit cell we use the di basis; for the discussion 
of the characteristic features of the internal and external spaces the ui basis is more 
appropriate. 

3. Experiment 

A detailed description of the preparation of a single crystal of metastable decagonal 
A178(21Mn22(2), its investigation by x-ray photographic techniques and the indexing of 
reflections was given in paper I. The reflections are quite broad, the average FWHMS are 
at least four times larger than those which are observed in the case of normal crystals on 
our diffractometer. Nevertheless, a remarkable number of reflections with large internal 
componentsofthediffractionvector areobservable(cf. figure2of paperI1). Thecrystals 
of the decagonal phase underwent a phase transformation, at room teinperature, to 
amorphous material within one year of their preparation. X-ray photographs showed 
powderringsand diffusescattering, only. Thisisone additional argument that the crystal 
investigated was a metastable quasicrystal and not a multiply twinned regular crystal. 
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Figure 2. A chardcterirtic (10110) section of the 5D Patterson function: ( a )  intensities 
computed Crom observation and (6) calculated inteositics. AU maxima of one unit cell arc 
contained in this plane. All plot coordinates are given on the U, basis. 

3.1. Darn collection 
The x-ray equipment used was an Enraf-Nonius CAD4 four-circle diffractometer, with 
MoKa radiation and a graphite monochromator. Lattice parameters were refined from 
24 rellections. w-scans with UJ = 5.0 + 0.35 tan 0'. extended at each side by 25% for 
background determination. Out of the infinite number of possible reflections within 
0 < 0 < 30" in a first run. all those within one asymmetric unit were measured with 
-3 < h, < 3,i = 1 to4,andO < h5 < 17. Thisdataset includesal1 reflectionsobservable 
on the x-ray precession photographs. A denser set of reflections may give resolution 
problems and would not yield much more observable intensities since it is known that 
the geometrical form factor gk causes a rapid decrease of the intensities with increasing 
internal component of the diffraction vector. In this way, 1807 intensities were collected 
with constant scan time of 4 min/reflection. The 332 reflections of this data set with 
1 > 20(1) (41): standard deviation from counting statistics) were remeasured in ten 
symmetrically equivalent asymmetric units witha scan timeof4min/reflection. The full 
set of 5189 intensities was corrected for Lorentz and polarization effects but not for 
absorption (due to  the very irregular shape of the crystal). After rejecting the weakest 
and the strongest reflections of each symmetrically equivalent set, the arithmetic mean 
and itsstandard deviationwascalculated from the-at least eight-remainingintensities. 
(R, = 0.038,233 unique reflections with I > 20(2)). 

4. Structure solution and refinement 

The structure of decagonal Al,8clMn2,0, has been solved in a rather straightforward 
manner. The 5D Patterson function (figure 2 (a)) is easy to interpret and a model with 
three atoms in the asymmetric unit has been used as the startingset for the least-squares 
refinements of the sD structure. The function minimized was 

x* = ~ w , ( l F o b l ( H ) I  - IFc.(~)l)' 
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with observed and calculated structure amplitudes I F,,(H) I, IF,,@) 1, respectively, and 
with weights wi = k / d (  F(H)); k is refined to obtain x2 = 1. This is recommended in all 
cases in which the errors of the reflection intensities are larger than is expected by 
counting statistics alone (Prince 1982). The reliability factors R and W R  used were 

R =  (xllFobs(H)l - ~ ~ ~ l ~ ( ~ ) ~ ~ ) ( ~ ~ ~ ~ b ~ ( H ) ~ ) - ’  

W R =  [ ~ w i ( i ~ ~ ~ ~ ( H ) I - I F ~ ~ ( H ) I ) z  (~~~:IF.~(H)/~)~’] ’ ’ ’ .  
The structure factor formula applied in the refinements was 

F(H) = 1/p1 exp(zxjH.r,)fK(HElp,~,(~~E ,Hl)gk(HI) 
k 

with diffraction vector H = (HE, HI) = X i  hi d,? , i = 1,5. On the qbasis the components 
of the diffraction vector are defined as HE = h:uf + h:uf + hfuf and HI = h:u: + 
h:uf.Thepositionalvectoroftheatomkisgivenbyrk = X i  xfdi. Theatomicscattering 
factorfk(HE) depends on the external component of the diffraction vector, only. p t  is 
the occupancy factor, the temperature factor T k ( H E ,  H I )  is written in the form 

T , ( H E , H l )  = exp{- f[B:,(h$ + hFz)a:’ + Bf3h$%;z] +B1 (hy + h : ) ~ : ~ ] .  
It contains the isotropic in-plane term B:, and the perpendicular component Bf3, both 
inexternalspace, aswell asonecoefficient B’ininterna1space.Theexternaltemperature 
factor components of the SD atoms have the same meaning as the temperature factor of 
aregularstructure. The internalcomponent, correspondingtoasmearingof the SD atom 
parallel to internal space, leads to a higher frequency of intersections of SD atoms with 
the physical space. Hence, a number of interstitial sites become occupied at the cost of 
the regular ones. Displacive disorder may, therefore, be described by the external and 
substitutional disorder by the internal part of the temperature factor. The geometrical 
form factor is given by 

&(ill) = ( I / U * ) ~ E   sin^,,,+, {A,[exp(iAitlAk) - ij 
-Aj:l[expCd,At) - 1I1[AiAjtl(A, - A , + d - ’  

with Ai = 2 z H r - e j  and le,l = l /a : .  Q, is the area of the SD unit cell projected upon VI, 
Ak is the radial atomic-size parameter defined in figure 3. We know from the Patterson 
analysis that all SD atoms occupy special positions (i/5, i/5, $5, i/5, z )  i can be an integer 
between 0 and 4, with minimum site symmetry 5 .  The same is the case for the original 
and the general Penrose tilings. Thus it is appropriate to take the general shape of a 
higher dimensional atom in the case of the general Penrose tiling (cf Pavlovitch and 
Kleman 1987) for the atomic shapes of the starting model for the least-squares refine- 
ments. This corresponds to an irregular decagon with five-fold symmetry defined by the 
angle Oi,i+ I between the unit vectors e, and e, t, spanning the decagon (figure 3), and the 
radius A,. In  the course of the refinements these shapes changed to regular pentagons 
and e,,,+, has been fixed to the ideal pentagonal value 2x,/5. The fine structure of the 
pentagonal atom of the Penrose tiling, as an example for a possible fine structure in our 
case, is shown in figure 3(a): each sector corresponds to a particular vertex configuration 
in the quasicrystal structure and may be occupied by a different atom type. The variation 
of the AI/Mn ratio for all these different regions would require more parameters than 
it would be advisable to refine with the given data set. Thus, for each SD atom, only one 
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Figure 3. Two examples of possible shapes of the SD atoms parallel to V,. Due to the site 
symmetry theshape hasto beinvariant under the actionofafivefold rotation. The pentagonal 
'atom' drawn in ( 0 )  corresponds to one of the four 'atoms' generating the original Penrose 
tiling, the marked regions ('chemical fine SlNCtUle') correspond to particular vertices of the 
tiling (cf Pavlovilch and Kleman 1987). The drawing in (b )  illustrates the shape of'atoms' in 
a general Penrose tiling, and is defined by the unit vectors e, with j = 0, . . .. 9. the radius A 
of the circumscribed circle and the angle S,,,, , betweenthe unit vectors. 

occupational parameter has been refined, giving the ratio of AI to Mn on this site, 
assuming a statistical distribution over one SD atom. The internal temperature-factor 
coefficients adopted values less than their standard deviations and were also reset to 
zero and fixed. 

TherefinementssmoothlyconvergedtoR = 0.305and wR = 0.144for233reflections 
with I > 240 and 18 variables. The quality of the least-squares fit is illustrated by a 
F,,b#f)/Fc,c(H) plot in figure 4. Most of the significant deviations from the ideal dis- 
tribution may result from the bad quality of the metastable AI-Mn crystal leading to 
rather large systematic errors in the diffraction intensities. Some are due to deficiencies 
in the structure model since neither the chemical fine structure of the atoms nor the 
residual electron density appearing in the difference Fourier synthesis (figure 5 )  have 
been included in the starting model. The number of parameters would have increased 
too much for this number of low quality (but the only accessible) reilections. An 
estimation of the amount of electron density not covered by the refined structure model, 
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, ,  

Figmm 5. (10110) sections of the SD (a) Fourier (b )  differencc Fourier function calculated 
after the last refinement cycle from F,(H) and F&V) - F&). The highest maximum in 
( b )  is about 12% of the highest one in (a). All plot mordinates are given on the vi basis. 

but which results from the Fourier syntheses, comes to a value of about 15%. Though 
the least-squares fit is not optimal, it can be expected for a centrosymmetric structure 
that most of the signs of the structure factors are correct, leading to reliable Fourier 
syntheses and, therefore, to a reliable map of atoms in the decagonal phase. 

5. The calculated density 

The density of the refined structure model may be calculated in the following way. Each 
section of a 5D atom with the physical space gives a 3~ atom. The probability of such 
sections is proportional to the area S2f of the internal component of  then^ atom k. For 
the case when 51: = 51' (the projection of the SD unit cell upon VI) this probability .~ 

Table 1. Parameters of the SD atoms of decagonal Al,*,21Mn22(2, with ESD'S in parentheses. 
Listedarefractionalatomiccoordinatesx,(d, basis), twoexternal (BF,, E f , )  andane internal 
(E ' )  temperature factorcoefficient [A'], partial Alsiteoccupancy factorp,, (pMn = 1 - pAJ, 
and radial atomic size parameter Ai as a fraction of 11.:'. Negative Ak corresponds to the 
opposite orientation of the vectors Age 

Parameters Atom 1 Atom2 Atom3 Atom4 

X I  115 315 n 215 
x2 1!5 3!5 n 2!5 
11 l i s  3!5 n 2!5 
X4 1!5 3!5 n 215 
XI n .06q7)  n . i q 7 )  114 1 14 
BB 1.8(3) 3.0(7) 5(1) 2.4(6) 
BY3 1.7(2) 3.2(6) 2(1) 1.2(4) 
B' n 0 0 n 
PA1 o . ~ ( a )  0.90 o q z )  n.3(1) 
A k  -0.403(2) -0.356(1) n m ( 2 )  n.350(1) 
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Figure 6. (FOX:) Siclions (paral!ilto thc intcmai spacej oi the 50 Fourier and difference 
Fourier functions of respectively, (a) and ( b )  atom one, (c) and ( d )  atom two. ( e )  and (f) 
atom three, and (9) and(h) atom four. TherefinedsizeparameterA,isindicatedschematically 
bythe pentagons. Relative peak heightsaregiveninarbitraryunits.AIIplofcaordinafesare 
given on the U, basis. 

becomes equal to one. Thus, the ratio Q!&2' gives the relative frequency of 3D atoms 
(vertices) generated from the SD atom k. The number density pN = (E Q:)/S2 (Q is the 
volume of the SD unit cell) gives the number of 3~ atoms (vertices) per unit volume. 
Thus, the density of the quasicrystal can be calculated as pc = M , p , / N , ,  where NL 
corresponds to the Avogadro number. Inserting the eiperimental values, we obtain 
pc = 3.1 Mg m-3. Considering the 15% of additional electron density not included in the 
refined structure model, one obtains a density of about pc = 3.6 Mg m-3. The density of 
the decagonal phase has not been measured experimentally, but some values of AI- 
Mn phases of similar composition are given for comparison: the observed density of 
icosahedral A178Mn22 is about 3.5 Mg m-3 (Yamamoto 1988), of hexagonal cpAl&in3 
(AI,Mn,) is po = 3.65(5) Mg m-3 (Taylor 1959), of hexagonal pMnAI, (Al&nm) is 
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~- , 1 -, 
Figure 6 continued 

pc = 3.556(2) Mg m-3 (Shoemaker et a1 1989), and of triclinic 6-AI,,Mn, (AI,,Mn,) is 
p = 3.88 Mg m-3 (Kontio eta1 1978). 

6. Results and discussion 

The refined atomic parameters in terms of the SD description are listed in table 1. All 
refined atoms occupy special sites ( x x  = i / 5 ,  i = 0, . . ., 4) as is the case for the ZD 
Penrose tiling. The external thermal parameters (which contain dynamical and static 
components) are similar to, or slightly higher than, those for atoms of regular structures. 
The values of the internal temperature factor components give no hints for a significant 
substitutional disorder in the real quasicrystal structure (phasons). By fixing the Al/Mn 
ratioof atom2 topA, = 0.9during therefinements, the theoreticalcompositionA178Mnzz 
could be obtained. 
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The qualitative structure model of Yamamoto and Ishihara (1988) consists of three 
5D atoms in the asymmetric unit with positions ( -2/5,  -2/5, -2/5, -2/5, 0.0833), 
(-1/5, -1/5, -1/5, -1/5,0.2500)and(-3/5, -315, -315, -3/5,0.25M)).givenona 
different basis however. The atoms have no chemical fine structure and no explicit 
differentiation between A1 and Mn atoms wasperformed. The structure model only has 
some basic similarities with the present results. 

A more vivid impression about the structure characteristics than can be obtained by 
numbers can be conveyed by special sections of the SD Fourier and difference Fourier 
functions. Thus, the Fourier map of the (10110) plane containing all 5D atoms in the 
unit cell is given in figure 5(a). The maxima marked 1, . . ., 4, and their symmetrical 
equivalents, correspond to the atoms included in the refinements. On the difference 
Fourier map (figure 5(b)) there appear some additional maxima; the maximum peak 
heights are about 12% of that of atom four in the Fourier map. An integration of the 
difference density of figure 5(b), and of eight more sections parallel to i t2  yielded an 
overall residual electron density of 15% of that of the model refined, indicating a lot of 
disorder. Thus, the four SD atoms listed in table 1 represent about 85% of the electron 
density of the quasicrystal, corresponding to the more- or less-ordered part of the 
structure, while the residual 15%. representative of the disordered part, can be derived 
from the (difference) Fourier syntheses only. This emphasizes the importance of (dif- 
ference) Fourier syntheses, a matter of course in regular structure analysis, for a reliable 
quasicrystal structure determination. 

The internalspacecomponentofthe5Datomsischaracterized in the (00011) sections 
of the 5~ Fourier function (figure 6). The pentagonal shape of the atoms parallel to the 
internal space is easily recognized. The difference-Fourier plots, giving the electron 
density resultingfrom theobservedstructure amplitudes minusthat ofthe refinedmodel, 
offigure (6) indicate thechemical fine structureoftheso atoms. Positive electron density 
corresponds to a concentration of Mn in this region, negative density indicates more AI 
relative to the average composition which has been refined for this particular 5D atom. 
Thus, analogously to figure 3(a) each region could be assigned to a particular vertex 
positionoccupied by aparticularatom. The highdegreeofdisorder (the Fouriersynthesis 
i n d i e t s  even in these subregions of the sc n t ~ m  ii stztis:iw! A!,% dis:iibuiion) does 
not let it appear advisable, however, to interpret the chemical fine structure in a more 
detailed way. The position of each type of atom in the 3D real structure can be secn much 
more easily in the Fourier sections of figures 7 and 8. 

7. The structure of the layers 

In figure 7, large real space (11000) sections of about 23.5 X 23.5 At of the 5c Fourier 
function are shown with line drawings illustrating the characterisiical features, For sake 
of clarity the (10010) sections are also given in each case. The correspondence of 3~ and 
SD maxima becomes more transparent in this way as do the global differences between 
the different layers. In figure 7(a) and (b)  the highest maxima are connected in such a 
was as to show the close resemblance of these two layers, which may be considered as 
one corrugated layer, with the puckered (y = t )  layer of crystalline AI,,Fe, (cf figure 4 
of Black 1955). As for AI,,Fe,, this layer consists primarily of AI. In the (10010) section 
one unit cell containing the atoms one and two is marked in each case. The broken lines 
correspondstothelinesaf~~ = 0.064andO.l24infigure5(a). Henley(1985)andKumar 
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Figure 7. Quasiperiodic (1 1wO) sections (parallel to the external space with a size of about 
23.5 x 23.5 Ai) of the SD Fourier function of decagonal AI,,Mn, at (a )  x, = 0.064, (b) x, = 
0.124 and (c)  x ,  = t .  Characteristic structure motifs are marked, which can also be found in 
slightlydistartedform in the AI,,Fe,-typestructures. (d)Thequasicrystalstructure projected 
down the tenfoldscrew axis (calculatedfromreRectionsF(h,, h,, h,, h,, O),only). Additian- 
ally, the respective (1W10) sections are shown to allow visualization of the correspondence 
between SD and 30 Structures. All plot coordinates are given on the U, basis. 
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et a1 (1986) already pointed out that the puckered layer of the AI13Fe4 structure may be 
considered as a relaxed decorated 2D Penrose tiling. 

In figure 7(c) the maxima are connected differently to emphasize the close resem- 
blance of thex, = f layer with the plane (y = 0) layer of crystalline AIl,Fe4 (cf figure 3 
of Black 1955). The unit cell of AI13Fe4 is marked with a chain line. Despite small shifts 
and a slightly different distribution of AI and transition metal atoms (the strong maxima 
in this Fourier section correspond to Mn atoms), these structure elements appear to be 
the same in both phases. The ratio of transition metal to aluminium in this layer is higher 
than that for the corresponding AIl,Fe4 layer. 

The distances between strong maxima (Mn-Mn) of about 4.8 %,agree quite well with 
the pair distances resulting from the neutron contrast variation study of Dubois and 
Janot (1988); the same is true for Mn-AI and AI-AI distances. 

The projection of the structure upon (11000) (Fourier synthesis calculated with 
F(h,h2h3h40), only) is given in figure 7(d ) .  It shows the same structural characteristics 

Figures. Quasiperiodic (11ooO) sections (parallel 
to the external space with a size of about 
40 x 40 A’) of the 5D Fourier function of deca- 
gonal AI,8Mnz at (a) x ,  = 0.W. ( b )  x ,  = 0.124 
and(c)x, = t.Theplotsshowthearrangementof 
structural units on a larger scale. 
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as the analogous map for decagonal A165C~20C015 (Steurer and Kuo 1990). The only 
difference is that in the present case the pentagonal channelsparallel to the tenfoldscrew 
axis are all occupied: the occupation is not in alternating manner. This also shows 
good agreement with structure motives visible on a HRTEM image of decagonal AI-Mn 
published as figure 8 by Hiraga et al(l987). 

Larger sections (of about 40 x 40 A*) of the electron density maps of the three 
different layers are given in figure 8 to illustrate the distribution of the decagonal and 
pentagonal structure motifs. 

8. The layer structure 

The 3D decagonal structure results from stacking sandwiches, each one consisting of one 
planar layer (x3 = a; one has to keep in mind that the coordinate of the periodic axis 
corresponds to x, on the D; basis and to x 5  on the d, basis, respectively) between two 
symmetrically equivalent puckered quasiperiodic layers (those containing the atoms 
withx, = 0.064 andx, = 0.124, as well asx, = 0.436andx3 = 0.376). These sandwiches 
are rotated by 36" relative to one other. The distances between the atoms of these two 
symmetrically equivalent layers should correspond to the frequent distances found for 
the pair correlation function (Dubois and Janot 1988). This can easily be verified for the 
atoms in the layers with xj = 0.064 andx, = 4 - 0.064 with a spacing of 4.66 A, but not 
forthelayersinx,= 0.124andx3= 4- 0.124.Theresultingdistanceof3.1 Adoesnot 
appear in the table of pair distance functions. This dilemma, however, can be overcome 
by looking at figure 5(b) .  The 5D difference Fourier map clearly shows, that the 5D atom 
two in reality is split into two atoms, one centred on the first atom layer with x3 = 
0.064, and the other at about x, = 0.14. The resulting spacing between symmetrically 
equivalent atomsofabout 2.7-2.8A can be related to the observedpairdistances again. 

The 3~ coordination polyhedra are almost the same as those occurring in the AII3Fe4 
structure (cf figure 1 of Black 1955), thus, the same is true for the distances. What are 
now the principal structural differences between both the quasiperiodic and the related 
periodic A1,,Fe4phases? Both have a preference for the formation of planar pentagonal 
and decagonal structure elements; they differ primarily in the way in which these 
structure elements are combined. The puckered (y = a) crystalline layer consists of 
infinite wavy bands of edge-connected pentagons running parallel to a. In the case 
of the quasiperiodic puckered ( x 3  = 0.064 + 0.124) layer, ten of these pentagons are 
arranged in the form of decagonal rings centred by a further pentagon. The crystalline 
plane(y = 0) layershowsdmersofunregulardecagonslike holesinanetworkofinfinite 
chains of edge-connected triangles running parallel to c and to a + e ,  respectively. In 
the corresponding quasicrystalline layer these decagons become regular and appear 
isolated or in pentagonal clusters. In both cases the quasiperiodic arrangement allows 
the formation of undistorted regular pentagons and decagons that may be favourable 
energetically. 

9. Summary 

The aim of the present study was to obtain a model of the 3D structure of decagonal 
A178(Z)Mn22(2). Practically, this can only be performed via 3D Fourier syntheses. The 
prerequisite for these calculations is the knowledge of the signs of the structure factors. 
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The mainobjective ofoursD least-squaresstructure refinement was, therefore, to obtain 
the signs. Even for the moderate R-factor of 0.144. one can expect correct signs for most 
of the structure factors. since for a change of the sign the magnitude of a structure factor 
had to run through zero. The electron density maps indicate a close resemblance of 
AI,8(z,Mnu~21 with the crystalline AIt,Fe4 structure, and similar coordination polyhedra 
with comparable distances consequently occur. In contrast to decagonal A I & U ~ ~ C O ~ ~ ,  
which is a two layer structure, decagonal A178(2,Mnp(2) is built of six quasiperiodic layers. 
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